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The evaluation of roots of equations is a problem of perennial 
interest. Bisection methods have advantages since the volume in which 
the root is known to be located can be steadily decreased. This method 
depends on the existence of a criterion for determining whether a root 
exists within a given volume. Here topological degree theory is 
exploited to provide this criterion. Only three-dimensional volumes are 
considered here. The result is of some use in locating roots and in 
illustrating the theory. The classification of roots as X-points or 
O-points and the generalization to three dimensions are also discussed. 
0 1992 Academtc Press, Inc. 

1. INTRODUCTION 

Bisection methods for finding roots of equations have 
certain distinct advantages, particularly in their stability. 
They depend on a simple test whose result can guarantee 
that a root will lie within a given region. Then, further 
search for the precise location of the root can be limited. 
This region can be subdivided, each subregion tested for 
inclusion of a root, and the search can be further restricted. 
This method will certainly converge if the test for the exist- 
ence of the root is precise. 

In one dimension, the test consists of evaluating the func- 
tion whose roots are desired at the boundary of the region 
in question. That is, if we desire roots of the equation 
f(x) = 0 in the interval a < x < b, we can evaluatef(a) and 
f(b). Then, there is at least one such root if the calculated 
f(a) andf(b) have opposite signs. Here, we assume thatf(x) 
is continuous and bounded and thatf(a) andf(b) have been 
evaluated with sufficient accuracy that their signs are known 
to a high degree of certainty. Further, iff(b) >f(a), then the 
number of roots at points wheref(x) has a positive slope 
exceeds by one the number of roots at points at whichf(x) 
has a negative slope. 

*This is a report of work sponsored by NASA Headquarters, 
Washington, DC 20546 under Contract NASW-4393. 

This test for roots can be generalized to higher-dimen- 
sional systems. For definiteness, consider three independent 
components of the magnetic field that are functions of three 
coordinates, B,(x, y, z), B,(x, y, z), and B,(x, y, z). It is 
desired to find those points where all three components 
vanish simultaneously, that is, where the field has a null 
point. 

We need a test to see if there is a null within a prescribed 
volume of the configuration space (x, y, z). This can be 
accomplished as follows. First, the field is evaluated over the 
surface of this volume. Then, a three-dimensional magnetic 
field space (B,, B,, B,) can be introduced, in which the field 
at a given position can be plotted according to the values of 
its components. The total of all the fields evaluated on the 
surface of the chosen volume forms a closed surface, a 
balloon, in the magnetic field space. For each point in the 
configuration space (x, y, z), there is a point in magnetic 
field space (B,, B,, B,); that is, there is a mapping back and 
forth between the two spaces. The interior of the magnetic 
field balloon maps to the configuration volume. A null point 
in configuration space is a point that maps to the origin of 
the magnetic field space. If the former contains the origin, 
B = 0, this maps back to the configuration volume, which 
therefore contains a null point. 

The solid angle subtended by the balloon in magnetic 
field space, as seen from the origin, determines whether the 
balloon encloses the origin. This is evaluated as follows. 
First, the boundary of the region in configuration space is 
divided into triangular finite elements, also called simplexes, 
and the field is evaluated at the vertices of the triangles. The 
field over each triangle is estimated by linear interpolation. 
Thus, each triangle in configuration space maps to a 
triangle in magnetic field space. Seen from the origin, B = 0, 
each of these magnetic-field-space triangles subtends some 
solid angle that carries a sign, plus or minus, depending on 
the direction of the field relative to the normal to the 
configuration-space triangles. The solid angle subtended by 
the balloon is the sum of the solid angles subtended by each 
triangle. The result must be an integer multiple of 471. This 
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integer is known as the topological degree. Note that an 
accurate evaluation of this integer can be achieved if the 
field direction at each point on the surface is estimated to 
the correct hemisphere. If the topological degree is non- 
vanishing, there is at least one null point within the volume 
of interest. 

Of course, roots of equations are of very general interest. 
The particular need that motivated this work arose from a 
series of papers that emphasized the role of magnetic nulls 
[ 1, 21 in plasmas and vorticity nulls [3] in fluid dynamics. 
To exploit this insight, it is necessary to evaiuate such roots 
in numerical models. A particular concern in this regard 
is the problem of locating nulls in simulation output, 
where the field values are given only at grid points. For such 
situations, it is useful to have a mathematical theory that 
provides convincing evidence that there are, or are not, nulls 
within a given grid element. Such a theory is described 
in Section 2. For some of us, it is useful to implement a 
theory numerically, to gain a better understanding. This is 
described in Section 3. Section 4 contains a short discussion 
of some practical aspects of this method, and Section 5 
contains some comparison to other work. The Appendix 
contains a discussion of the classification of null points, as 
illuminated by topological degree theory. 

2. TOPOLOGICAL DEGREE 

What is needed is a way of determining whether a given 
volume contains a null. The mathematics that underlies the 
method that is used here is called topological degree theory. 
This section contains some discussion of this theory, but not 
in a mathematically satisfactory way. From among many 
possible references that contain further details, one [4] is 
suggested here as a place to start. 

An essential element of topological degree theory is the 
linear behavior of the field in the vicinity of each of its nulls. 
If the null is at the point xi = xiO, i = 1, 2, 3, then the field in 
the neighborhood is given by 

where 

Bi = c (VB), (x, - xIo) + . . , (1) 
i 

(VB), = aBi/axj I x,=x,0, (2) 

is a 3 x 3 matrix of constants. 
The topological degree, D, of the field in the particular 

volume under consideration is given by 

D = 1 signrdeterminant (VB)]. 
nulls 

(3) 

We treat only the case in which all the nulls are isolated so 
that none of the eigenvalues of VB vanish. Thus, the deter- 
minant is nonvanishing. The topological degree is strongly 
conserved. Nulls can appear in a given volume only by 
crossing the boundary, or by the production of pairs with 
opposite signs of the determinant. The implications of 
this theory for the classification of nulls are discussed in 
the Appendix. Note that the topological degree does not 
provide a count of the null points, but only yields the 
difference between the number of nulls of positive and 
negative degree. 

The topological degree is additive. That is, the degree of 
a field in a large volume is the sum of the degrees of each of 
the smaller volumes of which it is composed. 

The quantity D for a given volume can be evaluated from 
a knowledge of the field on the boundary of the volume. It 
is this property that we exploit here. If the field on the sur- 
face of the boundary is plotted in magnetic field space, D is 
the number of times the origin is enclosed by the resulting 
surface. This is described in more detail in Section 3. Thus, 
D can be evaluated either through Eq. (3) or from the field 
on the boundary of the region. The equivalence of these two 
methods can be shown as follows. They are both additive in 
the sense described above, and they agree for small volumes 
that either contain, or do not contain, a null point. 

3. EVALUATION OF THE 
TOPOLOGICAL DEGREE 

In evaluating the topological degree, it is most convenient 
to work with a rectangular parallelopiped in configuration 
space, which will be called a box. For once thing, it is easy 
to divide a box into subvolumes that are also boxes and 
proceed to the evaluation of the null. The topological degree 
of the field in the box is evaluated to determine whether the 
field vanishes somewhere inside. 

To accomplish this, in the particular implementation 
described here, the field is evaluated at the eight corners 
of the box. Each of the six sides of the box is divided 
into two triangles, and the field over each triangle is, 
in principle, estimated by linear interpolation from its 
value at the vertices. Thus, in magnetic-field-space we 
construct a dodecahedron with triangular faces. To see if 
this dodecahedron encloses the origin, B = 0, we project it 
onto a unit sphere centered on the origin and calculate the 
area of the resulting configuration. 

The first step is to calculate the area of an individual 
triangle projected onto the unit sphere, that is, the solid 
angle subtended by three magnetic feld vectors, which we 
will denote by B, , B,, and B,. The three vertices in con- 
figuration space are ordered in a right-handed sense around 
the outward normal. The area of a spherical triangle is [ 51 
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A=4tan-‘([tan(B,+8,+8,)/4 

x tan(8, + 8, - 8,)/4 

x tan(8, + 0, - e,)/4 

x tan(e,+e, -@&4]1/2), (4) 

where the side of a triangle, 8,) is given by 

cos@, =(B,.B,)/lB,l IhI, (5) 
and similarly for 8, and 8,. When the triple cross product 
B, . B, x B3 is negative, the area of the triangle is taken to be 
negative. 

To calculate the total area, the area of the 12 triangles is 
summed. The number of times the projected dodecahedron 
covers the unit sphere, including a sign, is the area divided 
by 47~. This number is the topological degree and is the 
desired quantity. It is possible in principle for the topo- 
logical degree to be greater than 1, or less than - 1, in which 
case there is more than one null in the box. However, in the 
implementation described here with only 12 triangles to 
cover the surface, it is very likely that linear interpolation 
is invalid on at least one face if the magnitude of the topo- 
logical degree is greater than one. 

Two problems can arise. When the fields at two vertices 
of a triangle are nearly antiparallel, small errors in calcula- 
tion can lead to large errors in the area. This can happen 
when a null point is close to the edge of a triangle. The 
second problem arises when the area of a triangle is very 
large. When a triangle covers nearly a hemisphere, small 
errors of evaluation, or departures from the linearly inter- 
polated field, may lead to an incorrect sign of the area. This 
happens when the null point in configuration space is close 
to the side of the box that is being searched. In both of these 
cases, the size of the box is increased and its center slightly 
relocated, so that it more securely encloses the null, if there 
is one. 

In addition to the topological degree, a secant calculation 
is implemented. The field is evaluated at the four vertices of 
a right tetrahedron in configuration space. Call B, the field 
at the square corner, B, the field at a point displaced a dis- 
tance 6x along the x axis, etc. This gives precisely the right 
amount of information to estimate the field everywhere by 
linear interpolation. Within this approximation, the value of 
x at the location of the null is 

x=x,+ 
B, . (B, x B,) 6.x 

B,~B,xB,+B,,~B,xB, 

+B,.B,xB,-B,.B,xB, > 

. (6) 

The values of the y and z coordinates of the null can be 
found by cyclic variation. 

The secant method is frequently of limited value. In the 

implementation that is discussed here, this information is 
sent to the terminal, so that it can be utilized or discarded 
by the user. 

4. IMPLEMENTATION AND USAGE 

Here certain details of the implementation and usage are 
described. 

The independent variables, X, y, z, need not be 
orthogonal coordinates, nor do the quantities denoted by B 
need to form a vector. It is, however, sometimes useful to 
think of the box as rectangular, even when there is no 
significance in its actual shape. 

It is desirable that the triangles in magnetic-field-space 
should all be as close to the same size as possible. One 
way in which this is approached is to scale the x, y, and z 
components of the magnetic field separately so that the 
dodecahedron that is evaluated in the previous section is 
just inscribed within a unit cube. Further, if the unit cube 
does not enclose the origin, no further calculations are 
performed. That is, if one or more components of the field 
has the same sign at all eight vertices, then we predict that 
there is no null inside the box. 

The size of the box used in the initial evaluation should be 
chosen carefully. If it is distinctly larger than the scale of 
variation of the field, the approximations of linear inter- 
polation over each of the triangles will be inaccurate, even 
compared with the weak requirements of the theory. On the 
other hand, if the box is too small many evaluations will be 
required before the null is even caught inside a box. The 
minimum number of evaluations required scales as the 
cube of the ratio of the system size to the scale of variation 
of the field. Any information that can be used to reduce 
this number should be exploited. The present implementa- 
tion has been written to be interactive, to maximize the 
flexibility. 

If more triangles are used to cover the surface of the box, 
the box could be made larger without loss of accuracy. For 
example, a vertex could be added at the center of each face 
and 24 triangles employed. It would help if the labeling 
system were organized so that each triangle could be taken 
in order inside a DO loop. 

There is a scale size for which the method described here 
is most useful. As discussed in the previous paragraph, when 
the box is too large, the evaluation may be inaccurate. On 
the other hand, when the boxes are small and the root has 
been isolated, then the secant method is accurate and 
efficient. Thus, only a rather small number of bisections of 
the box are called for before the secant method is preferred. 

5. CONCLUSIONS 

Much of the previous work using topological degree 
theorv to construct bisection methods for evaluating roots _ 
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of systems of equations has striven for the generality of 
working in a space with an arbitrary number of dimensions. 
The restrictions of this paper to the case of three dimensions 
results in a different balance between various desired 
properties of the method. Such considerations are discussed 
in this section. 

Recall that the only result that we are seeking is whether 
a polyhedron in magnetic field space encloses the origin. 
It is sometimes possible to move the vertices of this 
polyhedron, that is, to modify the magnetic field at each of 
the eight vertices of the box in configuration space, in ways 
that simplify the calculation but do not change the relation 
between the polvhedron and the origin in magnetic space. 
One such operation is to take all the magnetic field vectors 
that lie in a given octant and transform them to the corner 
of the cube that lies in that octant. That is, each field compo- 
nent is assigned a value i 1. Then, all the triangles in the 
magnetic field space fall into a few types, and their areas can 
be easily evaluated. This gives accurate results if a sufficient 
number of triangles is employed to cover the boundary 
[6, 71. However, the method used here is to be preferred 
when the number of dimensions in the space is sufficiently 
small that the accurate evaluation of the area of triangles 
(or simplexes) is not unduly onerous. Also, when dealing 
with numerical simulation output where the field is only 
evaluated at grid points, it may not be practical to obtain 
independent field evaluations at other than grid points. 
That is, it may not be possible to improve the accuracy by 
subdividing triangles. Then it is most important to make the 
best use of the available information and to evaluate the 
areas of the triangles accurately. 

A modification of the previous method is to orient the 
box in configuration space to minimize the errors involved 
in moving the magnetic field vectors to the corners of a cube 
[S, 91. The comments above apply here also. In conclusion, 
an illustrative routine has been written for the evaluation of 
three-dimensional roots by a bisection method. 

APPENDIX: THE CLASSIFICATION 
OF NULL POINTS 

The theory that has been exploited here to determine the 
existence of null points of a magnetic field also says some- 
thing about the classification of null points. Places where 
the field vanishes differ in the nature of the field lines in their 
immediate neighborhood. In the linear approximation, 
these depend on the matrix VB defined in Eq. (2). In par- 
ticular, the eigenvalues of VB are decisive in determining the 
shape of the field lines. For example, if some eigenvalues are 
complex then field lines spiral into or out of the null, 
depending on sign of the real part of the eigenvalues. Thus, 

the nulls can be classified according to the signs of the real 
parts of their eigenvalues and according to the vanishing or 
non-vanishing of their imaginary parts. 

However, the topological degree theory shows that the 
sign of the product of the eigenvalues, that is, the sign of 
the determinant of VB, is a more fundamental property 
of the null than are the individual eigenvalues. A single 
isolated null point puts a sort of kink in the field that has a 
global effect that can be precisely measured at a distance 
from the null. That is why the test described in Sections 2 
and 3 is useful. The nature of this kink depends on the sign 
of the product of the eigenvalues of VB. In contrast, the 
individual eigenvalues have only a local effect. Thus it is 
reasonable to base the primary classification of nulls on the 
product of the eigenvalues. 

In one dimension, the sign of the determinant of VB is 
the slope off(x) at the null point, in the example in the 
Introduction. In two and three dimensions, it is convenient 
to restrict consideration to the case in which the field is 
divergence-free, so that the trace of the matrix VB vanishes. 
This is a case of considerable interest. 

Consider next the two-dimensional divergence-free case. 
If the trace of VB vanishes and its determinant is positive, 
then its two eigenvalues must be purely imaginary. In this 
case, the neighboring field lines lie on closed loops sur- 
rounding the null, which is thus classified as an O-point. The 
other possibility, for which the product of the eigenvalues is 
negative, has one positive and one negative real eigenvalue. 
Such nulls are called X-points from the configuration the 
neighboring field lines. Thus, topological degree theory 
distinguishes between X- and O-points in two dimensions. 

In the three-dimensional divergence-free case, either two 
eigenvalues have negative real parts, and the third one is 
positive, or the signs are all reversed. In the first case, which 
was called an A-null by Cowley [lo], the product of the 
eigenvalues is positive. On the other hand, the poduct of the 
eigenvalues is negative for B-nulls. Thus, in three dimen- 
sions, topological theory distinguishes between A-nulls and 
B-nulls. 

It is widely known that in two dimensions the differ- 
ence between the number of O-points and the number of 
X-points is strongly conserved. If a field evolves in such a 
way that an additional O-point is formed, then there must 
also be an additional X-point. It is usual to fasten on the 
shape of the neighboring field, and thus on the reality of the 
eigenvalues, as the crucial property distinguishing between 
X- and O-points. However, topological degree theory shows 
that the essential distinction between X- and O-points that 
generalizes to three or more dimensions lies in the sign of 
the product of the eigenvalues. In particular, an A-null is a 
generalized O-point and a B-null is a generalized X-point. It 
is the difference between the number of A-nulls and the 
number of B-nulls that is conserved. 
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